Name: \qquad

1. What is the voltage at point P which is close up to the two charges as shown?

2. Two charges are situated near point P. The angle $\boldsymbol{\theta}$ is $29.0^{\circ} . \boldsymbol{q}_{1}=1.35 \mu \mathrm{C}$. The potential difference at point P is $6.75 \times 10^{4} \mathrm{~V}$. Find the charge \boldsymbol{q}_{2}.

3. An electric field has a value of $9.50 \times 10^{6} \mathrm{~N} / \mathrm{C}$. A positive test charge of $22.5 \mu \mathrm{C}$ is placed in the field. What force does the charge experience?
4. Through what potential difference would an electron need to accelerate to achieve a velocity of $1.00 \times 10^{7} \mathrm{~m} / \mathrm{s}$?
5. An electron is fired into the midpoint of a field between two charged plates. The initial velocity of the electron is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The plates are a distance of 1.60 mm apart. The potential difference for the plates is 120.0 V . Determine where the electron will hit on the upper plate.

6. Two masses are set up as shown. The angle θ that \boldsymbol{m}_{1} makes with the vertical is 38.0°. \boldsymbol{m}_{1} is 552 g , $\boldsymbol{m}_{\boldsymbol{2}}$ is $455 \mathrm{~g} . \boldsymbol{m}_{1}$ is released, swings down and collides with the other mass. At the point of impact, the string holding up \boldsymbol{m}_{1} is vertical and it hits the other ball head on. \boldsymbol{m}_{1} ends up with a velocity to the right of $0.500 \mathrm{~m} / \mathrm{s}$. Find: (a) the potential energy of \boldsymbol{m}_{1} relative to the top of the table, (b) the speed of $\boldsymbol{m}_{\boldsymbol{2}}$ after the collision, (c) the distance \boldsymbol{x} that the ball travels before it hits the deck, and (d) the kinetic energy of \boldsymbol{m}_{2} just before it hits the deck.

